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Parallels between the dynamic response of flexible
bridges under the action of wind and under the forces
induced by crowds allow each field to inform the
other. Wind-induced behaviour has been traditionally
classified into categories such as flutter, galloping,
vortex-induced vibration and buffeting. However,
computational advances such as the vortex particle
method have led to a more general picture where
effects may occur simultaneously and interact, such
that the simple semantic demarcations break down.
Similarly, the modelling of individual pedestrians has
progressed the understanding of human–structure
interaction, particularly for large-amplitude lateral
oscillations under crowd loading. In this paper,
guided by the interaction of flutter and vortex-
induced vibration in wind engineering, a framework
is presented, which allows various human–structure
interaction effects to coexist and interact, thereby
providing a possible synthesis of previously disparate
experimental and theoretical results.

1. Introduction
This paper investigates the parallels between wind- and
human-induced vibration phenomena on bridges. There
is no attempt to argue by analogy, because that approach
has no intellectual basis. Rather, by noting the parallels,
the techniques and understandings developed in one
field may inform the study of the other.

2013 The Author(s) Published by the Royal Society. All rights reserved.
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For pivotal moments, wind engineering had the collapse of the first Tacoma Narrows Bridge in
the USA in 1940, and human-induced vibration had the openings of the Solférino (now Léopold-
Sédar-Senghor) Bridge in Paris, France, in 1999 and the Millennium Bridge in London, UK, in
2000. These events defined their fields: the post-Tacoma research by Farquharson et al. [1] led on to
the subsequent decades of progress in bridge aeroelasticity, and although large lateral responses
of a crowded footbridge had been reported earlier [2], it was the experiments by Arup [3], with
crowds on the Millennium Bridge, that led on to detailed quantification of human–structure
interaction effects. Large lateral oscillations under crowd loading have been reported on many
bridges before and since. A partial list is given in Venuti & Bruno [4] within a review of research up
to 2009. An occurrence on the Bosphorus Bridge, Istanbul, in 2010 [5], provides further evidence
that the phenomenon is not restricted to lightweight footbridges. More worryingly, the panic that
resulted in 119 deaths on a crowded bridge in Cambodia in 2010 has been attributed to large
lateral motions leading to a fear of incipient collapse [6].

Although walkers exert forces in all directions, the focus of this paper is on the lateral behaviour
that has been the subject of greatest recent interest. Similarly, the focus for wind is on the vertical
and torsional responses such as were observed at Tacoma. In each case, the paper considers the
forces on a static structure before looking at how those forces evolve as a result of the bridge’s
dynamic response.

2. The basic forces on a static structure
The lateral forces exerted by a walker on a static surface are of approximately square-wave form
with a frequency near 1 Hz [7]. In a first assessment, a designer might consider the response to
the first harmonic of a single ‘bad walker’ to be indicative of the bridge’s susceptibility to lateral
problems, this having been the traditional approach to vertical effects.

The comparable wind-engineering effect is vortex shedding. Boundary layers develop along
the deck surfaces, creating vorticity which is shed as shear layers that propagate downstream and
roll up via a Kelvin–Helmholtz instability to form the familiar von Kármán vortex street, creating
periodic crosswind forces that can excite the bridge into vertical or torsional responses.

These then are the basic forces—the lateral forces associated with each step and the vertical
forces associated with each vortex. In the simplest case, each force is assumed to be harmonic, and
it is assumed that the forces do not evolve in response to the bridge motion. This approach can be
generalized while still assuming no feedback: in the human–structure case, the single ‘bad walker’
indicator can be replaced by a performance-based design approach by considering crowds
with walking speeds, pacing frequencies, forcing magnitudes and phases selected randomly
from appropriate distributions. Forward integration of a time-domain model can then predict
the multi-modal response to the mode-generalized forces applied by the crowd [8,9], thereby
indicating the likely vibration levels in a set of plausible scenarios, such as the passage of several
joggers or a larger group of walkers.

The basic wind forces have two elements of randomness. One concerns incident turbulence,
typically described via the spectral approach and the aerodynamic admittance of Davenport [10],
the Engineering Science Data Unit [11], Lawson [12] and others. The second concerns the span-
wise decorrelation of von Kármán vortices. The consequent reduction in the magnitude of the
mode-generalized forces—compared with those obtained assuming full span-wise correlation—
can be modelled by incorporating empirical estimates of correlation length into the spectral
approach [13].

3. Frequency lock-in
That the structural response can feed back and affect the forcing is well known for vortex-induced
vibrations [14]. Vortices are released differently from moving than from stationary surfaces
such that the shedding frequency can lock in to the structural frequency. The susceptibility
of a structural mode to such vortex-induced resonance is indicated by the Scruton number, a
dimensionless mass-damping parameter. Modes with Scruton numbers below 15 are typically
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problematic [13], but the response is generally self-limiting, with crosswind displacement
amplitudes being roughly proportional to the reciprocal of the Scruton number. For chimneys, the
problem can be substantially ameliorated by helical strakes that disrupt the span-wise correlation.
For bridges, adjustments to the cross-section profile—such as the guide vanes fitted to the lower
corners of the Storebælt Bridge in Denmark [15]—can influence the way that vorticity is released
into the wake to advantageous effect.

For the human–structure case, an analogous ‘pedestrian Scruton number’ was proposed
in McRobie & Morgenthal [16]. This was a mass-damping parameter with the dimensionless
mass being a ratio of bridge to crowd mass (rather than bridge to air mass). It was proposed
that structural modes with sufficiently high pedestrian Scruton number—achieved perhaps by
provision of additional damping—could then be assumed to avoid the lateral instability under
crowd loading, and that a survey of problematic and non-problematic bridges would reveal the
pedestrian Scruton number levels required to avoid problems.

The lock-in concept was applied to the human–structure case in the Strogatz et al. [17]
synchronization model: walkers creating lateral forces that were originally at randomized
frequencies adjust their footfall timings to walk in phase synchrony with the bridge motions (and
thus with each other). Such feedback was proposed as the mechanism underlying the instability
of the lateral responses of bridges near 1 Hz. In this model, the bridge response begins small, the
fluctuations of the basic randomized forces being initially insufficient to overcome the structural
damping. However, as more people walk onto the bridge, the structural amplitudes begin to grow,
and once a critical number of people is exceeded, the rate at which forces grow owing to more
walkers becoming entrained to the bridge frequency exceeds the rate at which those forces can be
overcome by structural damping. The result is a divergent oscillatory growth of vibrations.

4. Forces induced at the structural frequency
Building on an idea of Barker [18], Macdonald [19] models each walker as an inverted pendulum
between successive foot placements, with foot placement strategies that provide stable long-term
balance. The unobvious prediction of this model is that, even if the walker maintains a constant
pacing frequency different from that of the bridge, there are force components created at the bridge
frequency as a result of the modulation in foot placement offset relative to the deck. Some care is
needed with terminology. Macdonald’s model leads to the prediction of forces synchronous with
the bridge motion, but the walker does not synchronize the timings of their footsteps.

Macdonald’s model successfully describes the gaits observed for walkers on structures
oscillating at low frequency, predicting how the walker’s centre of mass follows an undulating
trajectory at the bridge frequency, with the footsteps pattering either side of that trajectory at
their original higher-pacing frequency (figure 1). It follows from the centre of mass motions that
there will be a force on the bridge at the bridge frequency. Some component of that force will be
in phase with the bridge velocity and may feed energy into the bridge. Instability then occurs if
these forces exceed the structural damping.

The appropriate measure of the force component in phase with the bridge velocity is the cp

value, this being the constant of proportionality between the induced force component fv and
the local velocity ẋ of the bridge (i.e. fv = cpẋ). There is another, less important, component
in phase with the bridge acceleration, fa = ρmmẍ, with m the pedestrian’s mass and ρm the
proportionality constant.

The fluid–structure parallel to these in-phase force components are the forcing terms
associated with flutter. Classical flutter involves a torsional (pitch) and a vertical (heave) mode,
coupled by motion-induced lift forces and moments. For symmetric sections, the equations take
the form

ḧ + 2ξhωhḣ + ω2
h h = Lh

m

and θ̈ + 2ξθωθ θ̇ + ω2
θ θ = Mθ

I
(4.1)
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Figure 1. Thepredictions ofMacdonald’smodel for the foot placements of fourwalkers at 0.9 Hz ona0.4 Hzbridge. Thewalkers’
centres of mass (central dashed near-sinusoids) can be seen to follow undulating paths at the bridge frequency (central solid
sinusoid), even though the footfalls patter either side at their original frequency. The footfalls of one walker are emboldened.
(Online version in colour.)

with h, θ the heave and pitch, and the appropriately subscripted ω and ξ being the corresponding
undamped natural frequencies and fractions of critical damping, with m and I the mass and mass
moment of inertia, each per unit length. The coupling occurs via the lift Lh and moment Mθ on
the right-hand side. If it is assumed that the motion is harmonic, these may be linearized to

⎡
⎢⎢⎢⎣

Lh
1
2ρU2B
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, (4.2)

where ρ, U and B are the air density, incident wind velocity and cross-section chord length. The
parameter K = Bω/U is the reduced frequency, a non-dimensional expression of the structural
frequency ω. The reduced velocity vr is defined as 2π/K, a dimensionless measure of the incident
wind speed.

For plate-like cross sections, Theodorsen theory [20] provides the relevant ‘flutter
derivatives’—the dimensionless frequency-dependent coefficients H∗

i (K) and A∗
i (K) that relate

the motion amplitudes to the motion-induced forces. The wake is taken as a single (rather than
double) shear layer and has a sinusoidal form as it trails downwind. Theodorsen’s theory assumes
that there is no Kelvin–Helmholtz instability—the trailing wake does not roll itself up further. The
vorticity concentrated in this sinusoidal shear layer influences the new vorticity created back at
the surfaces of the moving structure.

Theodorsen’s approach was extended to bluff bodies by Scanlan & Tomko [21]. The equations
are assumed to take the form of equation (4.2), but the coefficients for a particular cross section,
rather than being computed, are measured across a range of prescribed frequencies on section
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model tests in a wind tunnel. The procedure assumes that the cross section is sufficiently bluff
that separation points will be determined by the profile corners such that there will be Reynolds
number independence allowing transfer from laboratory to full scale.

The parallel between flutter and human–structure interaction is striking. In the human–
structure case, the lateral force component induced at the bridge frequency is f = cpẋ + ρmmẍ
and, proportionality factors apart, the coefficients cp and ρmm are entirely analogous to the
flutter derivatives [22] (there being an additional proportionality factor to convert the harmonic
acceleration to the harmonic displacement). In both the wind- and human-induced cases the
flutter derivatives are defined by linearization and are thus, theoretically at least, independent of
bridge amplitude.

In what may be described as ‘pedestrian section model tests’, Ingólfsson et al. [23] measured
such coefficients in a laboratory, putting single walkers on a treadmill on a moveable platform that
could be put through prescribed harmonic displacements of differing amplitudes and frequencies.
The approach is entirely analogous to the wind-tunnel section model tests of Scanlan’s procedure.
However, it is questionable whether laboratory results can be transferred to full scale for humans
as readily as can be done for wind. For example, parallax clues from adjacent objects in the
laboratory will have psychological effects that may affect the foot placement control law, walking
on a treadmill at constant speed gives fewer options for adjustment of walking speed and foot
placement, and walking alone can be very different from walking in a crowd where there may
be oncoming pedestrians to be avoided and where there may be many subtle psychological
influences arising from the presence of walkers adjacent and in front. Noting that the Ingólfsson
et al. [23] measurements for cp were less than—and often considerably less than—the values
measured by Arup [3], it may be prudent for designers to use the latter, higher values, because
these were derived from experiments conducted with crowds on a full-scale bridge.

There is a similar mismatch between the ‘pedestrian flutter derivatives’ predicted by
Macdonald’s model and the Arup result of cp = 300 Ns m−1 over the full 0.5–1 Hz frequency
range. Macdonald presented two possibilities for the foot placement control law, with placement
choice dependent either on the absolute velocity of the walker’s centre of mass or on its
velocity relative to the bridge deck. For the absolute velocity control law, the model predicts
cp ≈ 220 Ns m−1 near 0.5 Hz, not too far from the Arup measurements. However, near 1 Hz, the
Macdonald model predicts cp ≈ 140 Ns m−1 independent of control law. This is less than half the
value measured by Arup. Extending the set of possible control laws—making foot placement
more generally dependent upon bridge motions—can lead to gaits capable of creating larger
cp in the 1 Hz region. Alternatively, larger cp values might arise if some of the walkers were to
synchronize their footsteps with the bridge motion, as described by Strogatz et al. [17], and the
possibility of such interaction is explored in a later section.

5. Two-dimensional section modelling
The parallel between fluid– and human–structure interaction is perhaps best illustrated by a
comparison of figures 1 and 2. Both correspond to prescribed harmonic motions of the bridge
deck at a frequency lower than human pacing or von Kármán shedding, respectively. The former
shows the foot placements according to Macdonald’s model, with the feet pattering rapidly either
side of the low-frequency undulations of the walker’s centre of mass. Figure 2, by comparison,
shows the vorticity generated by the oscillating bluff bridge deck with the long-wavelength, low-
frequency sinusoidal sweep of the Theodorsen-like flutter wake extending from left to right across
the figure, adorned by higher frequency von Kármán vortices that are shed from alternate sides
of the structure.

In each case, there are phenomena at two different frequencies: the high-frequency basic
forces (at the walker’s pacing frequency and from the von Kármán street) and the lower-
frequency motion-induced forces (from the sinusoidal undulations of the walker’s centre of
mass and from the Theodorsen-like flutter wake). The question naturally arises as to whether
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Figure 2. The wake behind an oscillating section of the Millau Viaduct, France. Long-wavelength sinusoidal undulations
associated with the low-frequency bridge motions are adorned on either side by von Kármán vortices being shed at higher
frequencies from the upper and lower deck corners and surfaces. The figure was produced using Morgenthal’s VXFLOW [24].
(Online version in colour.)

the phenomena at the different frequencies can interact if the wavelength of the flutter wake
becomes comparable to the von Kármán spacing or if the pacing frequency is close to that of the
bridge.

(a) Flutter–vortex-induced vibration interaction
For bridge sections, von Kármán shedding and flutter are usually treated separately, because each
tends to dominate at a particular wind speed—low speeds for vortex-induced vibration and high
speeds for flutter. There are cases, however, when such easy demarcation is not possible.

Experimental evidence for flutter–vortex-induced vibration interaction may be found in
Deniz & Staubli [25,26]. In particular, fig. 5a of [26] shows the lift curves for an elongated and
tilted rectangular section subject to prescribed harmonic crosswind displacements. The basic
feature is an amplitude-independent flutter curve garlanded by amplitude-dependent curves
in the region where vortex shedding and flutter frequencies are comparable. van der Pol-type
models have been proposed to generate the amplitude-limited limit cycle at lock-in [27], and
such nonlinear terms can be incorporated into a flutter derivative formulation to arrive at a model
capable of flutter–vortex-induced vibration interaction [28]. Scanlan [29] presented an alternative
description of flutter–vortex-induced vibration interaction which, like the basic flutter derivative
formulation for bluff bodies, provides a way of extrapolating wind tunnel results to full scale.

Before its collapse, the Tacoma Narrows Bridge underwent a variety of large-amplitude
responses, including a purely vertical motion before the predominantly torsional response which
led to its destruction. Billah & Scanlan [30] describe how many physics textbooks erroneously
explain the collapse as an example of ‘resonance’. The explanation that has since gained general
acceptance in the wind-engineering community is that it was single-degree-of-freedom torsional
flutter, which can arise when the A∗

2 derivative changes sign and the motion-induced forces
overcome the small structural damping of the torsional mode.

It was only with Larsen’s analysis [31] using the vortex particle (or discrete vortex) method that
a physics-based explanation of the collapse was finally presented. Larsen’s detailed and highly
visual modelling of the fluid revealed how large vortices were created by the leading edges
of the oscillating structure and were then convected along the deck (figure 3). These vortices
were generated alternately at the upper and lower leading edges, and released in synchrony
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Figure 3. A vortex particle simulation of the first Tacoma Narrows Bridge undergoing large-amplitude prescribed periodic
torsional motions. The figure, produced using Morgenthal’s VXFLOW [24], illustrates Larsen’s vortex drift hypothesis, with large
leading-edge vortices drifting across the deck, above and below, inducing periodic forces on the leeward portions of the deck.
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Figure 4. (a) The flutter derivative A∗
2 for a Tacoma-like H-section (calculated using Morgenthal’s VXFLOW [24]). (b) A zoom at

low reduced velocity.

with—and as a consequence of—the large-amplitude bridge motions. The pressure distribution
around the deck (and thus the associated forces) can be calculated precisely within the vortex
particle framework, allowing flutter derivatives to be calculated. Figure 4 shows the A∗

2 derivative
so determined by Morgenthal’s VXFLOW [24] for a Tacoma-like H-section. For plate-like sections,
Theodorsen theory predicts that A∗

2 is always negative, corresponding to positive aerodynamic
damping. However for a bluff section, A∗

2 can become positive (corresponding to negative
aerodynamic damping), and should this exceed the structural damping, then oscillatory torsional
divergence will result.

The Strouhal number computed by VXFLOW for the static Tacoma section, measured in the far
wake, corresponds to a reduced velocity of around 1.4, giving a first indication of where flutter
and vortex lock-in might be expected to interact once structural motions begin. The computed A∗

2
derivative (figure 4) does indeed exhibit some amplitude dependence in this region, becoming
zero for small-amplitude vibrations. However, while this is consistent with the simplest view of
flutter–vortex-induced vibration interaction, it does not explain the Tacoma collapse, because the
catastrophic divergent oscillations correspond to the more dramatic change of sign of A∗

2 that
occurs at reduced velocities above 3.

The large vortices produced at the leading (rather than trailing) vertical edges are key to
understanding the collapse, and Larsen [31] describes the phasing of the local moments generated
as each vortex passes across the deck. This is Larsen’s ‘vortex drift hypothesis’: that at a reduced
velocity of around twice that of the Strouhal resonance the drifting vortices above and below
the deck do no net torsional work on the deck, and at reduced velocities above this, net work is
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done and divergent oscillations begin. Whether such oscillations are described as vortex induced,
flutter or galloping is somewhat irrelevant. With its focus on the underlying physics, the vortex
particle method transcends the problematics of verbal categorization. Vorticity is created at the
fluid–structure interfaces and convected in obedience of the Biot–Savart law and the Kelvin
circulation theorems. The structure responds to the resulting pressures, and the resulting motions
influence the vorticity creation. It is inappropriate to categorize this complexity as vortex-induced
resonance or flutter, for it is neither, both and more.

6. Interaction in the human–structure case
Against this backdrop the possibility of a more complete model for human–structure interaction
is now considered. There are two disparate theories: the Macdonald model that holds walking
frequency constant but has variable (and non-harmonic) forcing amplitude, and the Strogatz
synchronization theory that holds the forcing amplitude constant but allows the walking
frequency and phase to evolve. The synthesis proposed here takes Macdonald’s biomechanically
based inverted pendulum model, but relaxes the requirement of fixed walking frequency,
thereby allowing some walkers to synchronize their footfalls with bridge motions. One reason
for proposing such a synthesis stems from the disparities that exist between the differing
experimental results of Arup [3] and of Ingólfsson et al. [23] and the differing predictions of the
two theoretical models.

For walkers just away from perfect tuning with a bridge motion near 1 Hz, the Macdonald
model predicts quasi-periodic solutions. As bridge amplitudes build, these gaits require the
walker to walk for prolonged periods with their feet crossed. While walkers have been observed
to cross their feet when walking on a moving surface, it may be hypothesized that others will
adjust their gait—particularly if there is a sense of danger of possible loss of balance—to a more
normal, more comfortable gait with widely spaced uncrossed feet.

The Macdonald model’s prediction of cp ≈ 140 Ns m−1 at perfect tuning near 1 Hz irrespective
of control law masks the fact that this is an average over all relative phases. At general frequencies,
walkers cycle quasi-periodically through all possible relative phases, giving a single long-time
average cp value. However, at perfect tuning, there is no quasi-periodicity to average over, and
the cp generated depends on the relative phase between walker and bridge. For a 0.86 Hz walker,
the variation of cp with bridge frequency is shown in figure 5a, together with a synopsis of various
experimental results. The corresponding variation of cp with phase at perfect tuning is given in
figure 5b, showing that Macdonald’s model contains solutions at perfect tuning that can provide
cp values higher than the circa 140 Ns m−1 phase-averaged value. The hypothesis of this paper is
that some walkers may tune to the bridge frequency and selectively adopt these higher cp gaits.

Figure 6a shows absolute foot placements for a walker whose pacing frequency is marginally
detuned from that of the bridge. Figure 6b shows the corresponding trajectories of a suitably
chosen variable S within the Macdonald model. S is the complexified version of s = y + ẏ/Ω +
(C0 + 1)x + C1ẋ/Ω , where x is the bridge displacement, y is the displacement of the walker’s
centre of mass relative to the bridge, and C0, C1 are coefficients in the foot placement control law
(taken here as C0 = 0 and C1 = 1, corresponding to the absolute velocity control law). The reason
for the choice of s is that it is continuous and quasi-periodic ab initio, requiring no transient burn-
in. Moreover, at the instant a foot is placed, s = z0 ∓ b, where z0 is the absolute foot placement,
such that the absolute foot placement can be discerned (up to ±b) from the diagram. A Poincaré
section of the flow sampling S at each right foot placement shows that the Macdonald model
contains an underlying circle map—this being the set of points on the right large circle. Given the
existence of such a map, a natural construction for a synchronization model would be to make
minor adjustments to the pacing period such that the quasi-periodic trajectory converges to a
period-1 fixed point on a nearby circle map.

Such a model can be obtained by discretizing the continuous Strogatz et al. [17] equation for
the evolution of the phase Θ of the force exerted by a walker,

Θ̇ =ωw + CXbr sin(Ψ −Θ + α), (6.1)
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Figure 6. (a) The absolute foot placements of a detuned walker following Macdonald’s model (fbr = 0.839 Hz and
fwalk = 0.86 Hz), and (b) the corresponding quasi-periodic trajectory of the complex variable S.

where ωw is the initial walking frequency, Ψ is the phase of the bridge motion and α is
some constant angle offset. The coefficient C is a measure of the walker’s susceptibility to
synchronization, and Xbr is the bridge amplitude. As the bridge amplitude grows, the evolution
of the walker’s phase Θ is increasingly adjusted away from its original angular frequency ωw by
the sine term, this evolution depending on the relative phase Ψ −Θ between bridge and walker.

Discretization is achieved by writing Θ̇ = 2π/Ti andωw = 2π/T0, where T0, Ti are the durations
of the initial and the current walking cycle, respectively. Because Ti is evaluated at each footfall,
the phaseΘ will be a constant at the point of evaluation (say 0 for a right foot and π for a left foot),
and can be subsumed within the parameter α. The resulting candidate equation for the evolution
of the pacing period is thus

Ti = T0 − CXbrT2
0

2π
sin(Ψ + α), (6.2)

where the final term has made the approximation that Ti ≈ T0.
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Figure 8. When timing adjustments are incorporated: (a) the absolute foot placements (fbr = 0.839 Hz and fwalk = 0.86 Hz)
and (b) the trajectory of S converges to a nearby period-1 fixed point in synchrony with the bridge motions (cf. figure 6).

As an initial suggestion, we propose that the synchronization sensitivity parameter C be taken
as 10 m−1 s−1, this being just over half the value suggested by Strogatz et al. [17]. The lower value
is proposed here because just less than half of the cp = 300 Ns m−1 measured by Arup near 1 Hz
is now generated by the flutter-like forces of the unsynchronized walkers.

The behaviour of this map for prescribed harmonic bridge motions (i.e. Ψ =ωt + ψ0) of zero,
small and large amplitude is illustrated in figure 7. The walker/bridge frequency ratio is initially
1.07, and figure 7a corresponds to a stationary bridge, such that the frequency ratio remains fixed
and the walker’s phase slips by a constant angle relative to the bridge each cycle. For small bridge
amplitudes (figure 7b), the degree of phase slipping varies each cycle, and there is intermittent
behaviour when the walker’s frequency becomes close to the bridge frequency for protracted
periods. For larger bridge amplitudes (figure 7c), there are two fixed points, one of which is
attracting, such that the walker’s frequency converges to the bridge frequency and to a particular
phase offset irrespective of the initial phase difference.

The effect of the small adjustments to the walking period on a walker following Macdonald’s
model is shown in figure 8. The previously quasi-periodic trajectory that involved prolonged
foot-crossing evolves, converging to an uncrossed gait synchronized to the nearby frequency of
the bridge.
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Figure 9. The cp values for walkers with bridge frequencies of 0.65 Hz (a) and 0.85 Hz (b), with the timing adjustment of
equation (6.2). The garlands of curves above the (solid) Macdonald curves are for bridge amplitudes of 20–100 mm.

For walkers who are not closely tuned to the bridge motion, the timing evolution equation will
have little effect, and they will continue to walk at near their original pacing frequency, largely
following the Macdonald model.

Figure 9 shows the effect of the footfall timing adjustment on final cp values, plotted against
original footfall frequency, for bridges oscillating at 0.65 Hz (figure 9a) and at 0.85 Hz (figure 9b).
The Macdonald curves without synchrony (solid, bold) are shown. These correspond to a
pedestrian mass of 74.4 kg, inverted pendulum frequency parameter Ω = √

g/L with L = 1.2 m
and g = 9.81 m s−2 and stability offset b = 15.7 mm. The control law is that based on absolute
velocity. In each case, the Macdonald curve is garlanded by curves corresponding to walkers
who synchronize to various bridge amplitudes in the range 0–100 mm, showing how previously
detuned walkers become successively entrained as bridge amplitudes grow. For a 0.65 Hz bridge
mode, few walkers are entrained, and the overall effective cp—an average over the original
footfall frequency distribution—would be close to the Macdonald values near 200 Ns m−1.
Bridge frequencies near 0.85 Hz lie within the typical range of footfall frequencies, and here
the Macdonald cp ≈ 140 Ns m−1 values are augmented by synchronizing walkers, bringing the
overall cp closer to 300 Ns m−1. This combined model, then, is not too distant from the Arup
values over the full 0.5–1 Hz range.

While this demonstrates how synchronization can lead to higher average cp values, figure 9
shows that some walkers—those whose frequency offset is only just close enough to be
significantly influenced by the synchronization mechanism—are entrained such that their final
phases relative to the bridge lead to lower and even negative cp values. These are shown dotted
below the Macdonald curves in figure 9. How this arises can be understood from figure 7, in
that the fixed point (where the sloping sine wave intersects the diagonal) shifts as the sine wave
amplitude grows. The location of the fixed point is set by the phase constant α, which has been
chosen to give large positive cp for walkers who start near perfect tuning. The fixed point for
walkers starting with a larger mistuning will be at a different phase, which will correspond to
smaller and possibly negative cp. In this model, mistuned walkers may even be entrained to walk
indefinitely thereafter with crossed feet, which does not match the hypothesis that walkers will
tend to select a comfortable gait.

To create a model wherein all walkers who synchronize do so to the same final phase,
the x-coordinate of the fixed point of figure 7 must remain unchanged with respect to bridge
amplitude and initial detuning. This can be achieved by setting

α = sin−1
(
�

K

)
, with �= T0 − Tbr and K = CXbrT2

0
2π

. (6.3)
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Figure 10. The cp values for walkers on bridges having frequencies of 0.65 Hz (a) and 0.85 Hz (b), with the timing adjustment
of equation (6.5) such that all walkers who synchronize do so to the same final phase ofπ relative to the bridge.

A candidate equation for the time Ti/2 to the next footfall is then given via

Ti

2
= T0

2
± K

2
sin(Ψ + α) (6.4)

with the ± corresponding to right or left footfalls. (A walker’s phaseΘ is defined here to be zero at
right footfall and π at left footfall, and the bridge phase Ψ =ωt + Ψ0 with x = Xbr cosΨ and t = 0
at the first right footfall.) This model leads all synchronizing walkers to a final phase ofΘ − Ψ = π

relative to the bridge motions, corresponding to an uncrossed gait with feet well spaced, which
would be reassuring to walkers who are concerned about their stability.

The above equations are only valid for �<K—that is, if the sine wave of figure 7 intersects
the diagonal, such that a final fixed point exists. For detunings beyond this, we may choose to
ignore the intermittent behaviour, and keep Ti = T0 such that walkers simply obey the unadjusted
Macdonald model unless amplitudes grow sufficiently to entrain them.

The resulting cp values are shown in figure 10 for bridge frequencies of 0.65 and 0.85 Hz at
various amplitudes. All entrained walkers converge to the same final relative phase and create the
same final cp for a given bridge frequency and amplitude. The height of each plateau is deducible
from Macdonald’s model applied to tuned walkers placing their footfalls at phase π relative to
the bridge (with phases defined as above), giving

cp = 2mΩ2A2

πω
(1 + eΩT/2)

(
1 + b

AXbr

)
, (6.5)

where A = 1/(1 + (Ω/ω)2). The width of each plateau is determined by the synchronization
parameter C of the Strogatz et al. model (taken here as C = 10 m−1 s−1).

The rightmost halves of each diagram are of greatest interest, because these cover the
typical walking frequencies of 0.75–1 Hz. For a 0.85 Hz bridge mode, unsynchronized Macdonald
walkers provide cp values of around 140 Ns m−1, but synchronizing walkers can provide
additional cp, making plausible a total of around 300 Ns m−1.

Describing the effects of a synchronized walker in terms of cp values masks the simplicity of
the forces they apply. At perfect tuning, the magnitude of the force in phase with the velocity is
cpωXbr, with cp given by equation (6.5). Each synchronized walker could thus be represented as a
tuned harmonic force with magnitude rising linearly from around 30 N on a static deck to around
180 N on a bridge undergoing large vibrations of around 100 mm amplitude. The magnitude of the
total force felt by the bridge at the bridge frequency would thus rise super-linearly with amplitude
as more walkers are entrained.
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(a)

(b)

Figure 11. The flow around the Storebælt section using Prendergast’s vortex particle formulation [42], showing how incident
turbulence disrupts the regularity of the von Kármán street. Velocities and vortex particles are shown in (a) and (b) respectively.
(Online version in colour.)

The exact description of how the pacing period evolves is of less importance than the fact
that it can, and the foregoing synthesis of the Strogatz et al. and Macdonald models breaks down
the previous demarcation between the two forcing mechanisms and shows how the two may
interact to create the forces observed in the full-scale Arup experiments. For the designer, there
may be less interest in the details of the biomechanics, given the simplicity of the Arup design
recommendation of cp = 300 Ns m−1 for modes in the range 0.5–1 Hz. For many footbridges, the
adoption of this value will mean that additional damping must be provided, perhaps in the form
of tuned mass dampers. A complex mode formulation for addressing the complications that then
arise from the localized damping is described in McRobie & Winslow [32].

7. The three-dimensional time domain case
In both the wind- and human-induced case, one can foresee a move towards total computation,
whereby a designer creates a detailed three-dimensional finite-element model of the structure and
immerses it in a computational wind tunnel or allows a virtual crowd to pass across it.

While fully three-dimensional computational fluid dynamic modelling is prevalent in
aerospace and motor sport, the difference in scales for bridges—from spans of the order of
kilometres down to boundary layer details requiring millimetre resolution to accurately capture
the vorticity creation—is considerably more challenging. Even for aeronautical and automotive
applications, full aeroelastic simulation is still in its infancy, often restricted to analysis of
components.

The mesh-free nature of the vortex particle method lends itself well to analysis at differing
scales and around moving structures. For example, Morgenthal’s VXFLOW [24] provides high
resolution in the boundary layers around moving surfaces, and achieves computational efficiency
by discarding far-field resolution. However, extension to three dimensions is difficult, not
only because of the large increase in the number N of particles whose N2 interactions must
be computed, but also because of three-dimensional complications such as vortex filament
stretching. Such three-dimensional vortex models have been created [33] but their application
to bridges remains distant.

In lieu of such fully three-dimensional models, the more computationally tractable analysis
of parallel two-dimensional slices at sections along the deck has been proposed [34–40], with
slices coupled via structural finite elements and via low-resolution interactions of the adjacent
two-dimensional vorticity fields.
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Although phenomenologically different from the fluid–structure instabilities, incident
turbulence provides an additional complication. Prendergast & McRobie [41,42] show how the
upstream release of appropriate vortex particles can create the desired horizontal and vertical
turbulence spectra. Figure 11 shows how this not only causes buffeting, but also disrupts the
regularity of the von Kármán street. The approach was extended by Rasmussen et al. [43] to
calculate the along-wind and vertical aerodynamic admittances for static bridge decks. The
method is restricted to static decks, there being little point in including incident turbulence in
aeroelastic simulations, given that incident turbulence will be span-wise decorrelated. However,
the possibility of analysing both turbulence and structural motion via parallel slices (as described
above) remains.

For wind, then, the analysis of the whole-bridge three-dimensional fully coupled aeroelastic
response with incident turbulence remains some years away, while the possibility of the parallel
complete analysis for crowd-loading appears considerably closer.

The models of human walking discussed thus far, such as the majority of models for
wind-structure interaction, are two dimensional. A model for the three-dimensional motion of
pedestrians has been put forward by Morbiato et al. [44]. Here, an inverted pendulum model that
can move laterally and longitudinally appears to be capable of producing the flutter-like force
components. Moreover, it also predicts that a walker will—in certain frequency and amplitude
ranges—synchronize to the bridge motions via a parametric interaction between lateral and
longitudinal effects in regimes that form Arnol’d tongues across the parameter space. This
elegance, though, comes at a cost of complexity.

A different form of three-dimensional model is described in Durupinar & Güdükbay [45],
whose approach resembles that of video games and fire evacuation models wherein individual
agents—represented graphically as virtual humanoids —respond to their local environments,
avoiding obstacles and each other as they progress through the scene. This is perhaps the
closest yet to fully three-dimensional discrete pedestrian modelling, and the prospect of designers
walking virtual crowds across finite-element models of their bridges appears to be approaching.
However, further experiments are required to refine not only the biomechanics of walking on a
moving deck, but also the psychology of crowds, be they rush hour commuters or New Year’s
revellers. Such experiments not only can measure the induced forces but can use motion capture
technology [46] to focus on the biomechanics. Such ‘pedestrian imaging velocimetry’—applied
to real crowds on real bridges—would appear to be the appropriate method of calibrating the
computer humanoids.

Further three-dimensional effects concern the structure itself. If horizontal motions become
large enough to cause a significant proportion of walkers to synchronize their footfalls near 1 Hz,
then their vertical forces are also synchronized near 2 Hz and could dangerously excite a vertical
mode in that vicinity. Moreover, there remains the possibility of parametric resonance between
modes which are coupled by weak nonlinearities (as in the simple spring pendulum), such that
energy fed into vertical modes may transfer to horizontal motion, and vice versa. Further yet,
there are often modes—particularly on curved footbridges—which involve both horizontal and
vertical responses at any point, meaning that vertical and horizontal effects cannot be so readily
separated.

Somewhat paralleling turbulence in the fluid–structure case is inter- and intra-person
variability. In time domain crowd models, individual balance control laws can be readily
randomized. Based on the results of extensive laboratory experiments, Ingólfsson & Georgakis
[47] proposed a stochastic load model wherein pedestrians exert forces at their walking frequency
and also at the bridge frequency. Given the frequency and amplitude of the deck at each walker’s
present location, the cp and ρmm flutter derivatives are updated stochastically to match empirical
statistical distributions. However, as has been argued, laboratory cp values for single walkers
might not be appropriate for crowds on a real bridge.

In summary, the parallels between fluid– and human–structure interaction exist into the more
sophisticated three-dimensional analyses, with randomness manifesting itself as both buffeting
and span-wise vortex decorrelation in the former, and as the variability of individuals in the
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latter. Fully three-dimensional modelling in each case is in its nascent stages, with incident
turbulence and three-dimensional vortex particle models in the aeroelastic case finding parallels
in the agent-based ‘discrete pedestrian’ simulations in the human–structure case.

8. Differences
Although there are parallels between the two fields, there are differences. The primary difference
concerns risk. The paper has thus far focused on modelling: given a scenario (a wind speed, a
crowd), what is the bridge response? But there is also the question of which wind speed, which
crowd. In wind engineering, there exist meteorological records from which extreme statistics
can be drawn with some degree of confidence, and even possible climate non-stationarity can,
in theory, be taken into account. In the human–structure case though, there are no systematic
records, and designers are required to make assumptions about possibilities. The tendency to
consider only well-behaved crowds, with perhaps some acknowledgement of small groups of
vandals, ignores the extreme possibilities that have been observed. During millennial and similar
celebrations, excited crowds can throng onto bridges, often with much involvement of alcohol;
in December 2010, students were kettled to extreme densities on Westminster Bridge in London;
there was a similar occurrence (albeit at lesser density) in October 2011 with the Occupy protesters
on Brooklyn Bridge in New York; and in 2010 there was the Cambodian tragedy. Modelling
walkers under normal conditions does not address such possibilities, and a systematic procedure
for assessing the extremes of human–structure interaction is currently lacking. In the face of such
uncertainty, resilience can be provided by the adoption of higher cp values, leading to the prudent
provision of more damping and more mass. In line with earlier sections, this paper asserts that
the arguing down of cp values based on theoretical models of normal walking or on the results of
laboratory experiments on single walkers should be avoided.

9. Conclusions
The forces induced at the bridge frequency by walkers following Macdonald’s [19] model parallel
those of flutter, while the synchronization model of Strogatz et al. [17] parallels vortex-induced
lock-in. The recognition that flutter and vortex-induced vibration can interact led to the proposal
that made minor adjustments to the Macdonald [19] model allowing walkers to lock-in. The
resulting synthesis appears capable of explaining the high cp values measured by the full-scale
crowd load tests conducted by Arup over the full 0.5–1 Hz frequency range.

Further parallels were noted between the randomness inherent in wind engineering (incident
turbulence or span-wise decorrelation of vortices shed) and the inter- and intra-personal
variability inherent in human walking. Discretized models—vortex particle and discrete
pedestrian—can be extended to incorporate such variability, but challenges remain. In wind
engineering, the whole-bridge fully three-dimensional model with incident turbulence remains
a formidable problem. In human–structure interaction the challenges in the comparable whole-
bridge modelling of crowd loading lie more in developing a proper understanding of the
biomechanics of walking on a moving structure and of the psychology of walking in various
forms of crowd.
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